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The variation of sin 0 over a diffraction line in the back-reflection region is such tha t  the eentroids 
of spectral and observed profiles do not correspond exactly in the Bragg equation. The discrepancy 
has been called dispersion error. 

The modification of the line-profile due to the Lorentz factor causes a similar error. Previous 
derivations of the Lorentz factor have distinguished between the so-called 'polychromatic' factor 
for single crystals and the 'monochromatic' factor for powder work. Neither are applicable in this 
case since a 'polychromatic' factor for powder work is required due to the finite spread of wave- 
lengths in the characteristic lines. The new Lorentz factor is calculated, giving 

P ( ~ ) ~  oc F ( ~ ) ~  tan ~/2 ,  

where ~p is the diffractometer angle (-~ 20), P(y~) the observed profile, and F()t) the spectral profile. 
The polarization factor causes a somewhat smaller shift of the centre of gravity of the observed 

profile. 
A theoretical t reatment  of these aberrations is given. To the first order, the Lorentz factor 

displaces the centroid by (2V tan 3 0)/~ 2 and the dispersion factor by an additional (V tan 3 0)/~ 2, 
both towards high 20, where V is the variance of the spectral profile over the range used, 0 is the 
mean diffraction angle and ] the mean wavelength. The total correction has been calculated and 
plotted on the assumption of Cauchy spectral profiles. I t  is additive to, and independent of, the 
normal corrections for geometrical aberrations and becomes larger than these at  very high angles. 

The total effect on the line profile can be corrected by replotting, if each reading is weighted by 
(cos 0)3/2, but limitations of this and other replotting techniques, due to their dependence on the 
other aberrations present, are pointed out. 

1. Introduction 

Accurate measurements of lattice parameter are now 
possible with the counter diffractometer as the result 
of extensive studies over the past few years of all the 
major aberrations of the instrument. 

One such aberration is due to the wavelength spread 
of the characteristic wavelength 'lines'. The non-linear 
transformation from the 2. to the 0 scale given by the 
Bragg equation causes a shift of the centroid of an 
observed profile from the value corresponding to the 
centroid of the spectral profile. This shift may be 
considered to be made up of a shift due to pure dis- 
persion and a shift due to the Lorentz factor. A third, 
smaller, shift occurs due to the variation of the 
polarization factor over the line. 

The effects of a distr ibution of lat t ice spacings and  
X - r a y  wavelengths on line positions have  been studied 
by  A. R. Lang (1956). The main  conclusion d rawn by 
this au thor  is t ha t  the  t rue  line profile m a y  be gener- 
a ted  from the observed one by replott ing against  
sin 0. Graphs are also given of displacement of centre 
of g rav i ty  assuming Gaussian line profiles. 

t Present address: Massachusetts Institute of Technology, 
Cambridge 39, Massachusetts, U.S.A. 

~ T h e  purpose of the  present  paper  is to derive a more 
general expression for the  shift  of the  centre of g rav i ty  
due to these effects. This will allow corrections to be 
made,  which are accura te  to the order of 0-001 ° 20, 
wi thout  the  necessity for the replot t ing of the  profiles. 
I t  will also permit  present  techniques of centre-of- 
g rav i ty  de terminat ion  to be retained.  A new method  
of weighting the individual  s tep-by-step intensi ty  
readings is also described which will give the  same 
result  as replot t ing against  sin 0. I t  is pointed out  t ha t  
corrections obtained by replot t ing techniques are not  
completely reliable since accurate  corrections mus t  be 
based on the spectral  and not  on the observed profiles. 

2. The  angular  factor 

2.1. The interference function 
The interference funct ion in reciprocal space Ip ( r* )  

for a powdered sample of equal-size crystall i tes m a y  
be generated by  considering the  single-crystal  funct ion 
Io ( r*)  oriented in all directions with equal probabil i ty.  
I t  will therefore be spherically symmetr ica l  about  the  
reciprocal latt ice origin, 

Ip ( r*)  = Ip([r*[)  = Ip(r*) (1) 
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and will be given by 

lf~(,,)Io(r*)dS= ff~(~.)I~(r*)dS = 47~r*~I~(r*) , (2) 

where S(r*) is the spherical surface of radius r*. If 
crystallites with a distribution of reciprocal lattice 
vectors q ~  are present in the sample, the corre- 
sponding interference function J(r*) will be obtained 
by  the superposition of the individual functions, 

J(r*) = 27 I~(r*) 1 I f  4~r *~ ~ ~,z(,o)I°~(r*)dS" (3) 

If a continuous distribution G(~) of ~ may be 
assumed 

If, further, the crystallites are sufficiently large, 
Ioo(r*) will be so sharp that  G(~) may be considered 
constant over the range of ~ near r* for which Ioo(r* ) 
is appreciable, and then 

J(r*) = a(r*) 4~r,., io if~(ro)Ioe(r*)dSd~ . (5) 

Since the crystallites are identical, and since ~o/~r*= 1 
and $S (~r* is an element of volume in reciprocal space, 
this may  be transformed to 

G(r*) ' 

Where ~'~e~ is the small volume in reciprocal space 
over which Io(r*) is effective, and p is the multiplicity 
factor. By a well-known result this reduces to 

a(r*) .,, , 
J (r*) = p 4-~r.r.~ 2v v , (7) 

where N is the number of scattering centres in a 
crystallite and v* is the volume of the reciprocal 
lmit cell. 

2.2. The line profile 
We consider wavelengths in the range )l to ~+5;t 

incident upon the sample while the diffractometer 
angle F (= 20) changes at constant angular velocity 
eo to y~+Sy~. If F(2)6;t is the incident intensity flux 
per second of X-rays in this wavelength range, the 
total incident flux in the time taken to transverse ~ 
will be 

F(~) ~ ~ /o~ .  

:Now J(r*) represents the intensity flux diffracted per 
second per unit solid angle in real space, per unit 
incident energy, in terms of the scattering power of 
a single unit of the structure, under the diffraction 
conditions defined by r*. The total intensity passing 
through the receiving s]it in the movement through 69 
will therefore be 

× {o~12(l+cos 9v/)J(r*)d2d¢2d~ 1 . (8) 

where ~1 and ~2 are the angles subtended by the 
dimensions of the receiving slit at the sample, and the 
other terms have their usual meaning. Using equation 
(7) we have 

p(9)~y~ ~: f~ i~ . f  F(~) G(r*)r .2 

× ( l+cos  2 9)v*d~de~de~9.  (9) 

The integrand may be considered constant over the 
ranges of s~ and ~e subtended by normal receiving slits 
in the back-reflexion region, and since these angles 
are constant 

I F(~) v.(1 +cos ~ ~v) d~t (~9. (10) 
G(r*) 

P(v?) ~9 oc r *~ 
A 

If the distribution G is sharp compared with 2' 

/)(~')59 -- ( l + c ° s ~ V ) v * F ( ~ ) ~ 9 ~  ~' G(r*)d~ ( l l )  
r*2 d2 

(1 +cos ~ 9) v*F()O ~ ~ ~ 
= r,~. -~  ~. J G (r*) ~r* dr* 

(12) 

oc sin (9/2) ( l + c ° s ~ )  F(;t) 5;t (13) 
cos (9/2) 

using the Bragg relationship between ~ and r*. 
Similarly, if the distribution F is sharp compared 
with G 

(l+c°s~YO v*G(r*) ~YJ I F(X)d~ (14) sin 2 (9/2) -~rr* 6r* ~ 

(1 +c°s2 ~) G(~) ~o. (15) 
sin s (~v/2) cos (yJ/2) 

The first case is normally the one of interest for high- 
accuracy lattice parameter measurements. Modern 
technique for such work involves the determination 
of the centroid of the complete Kc¢ doublet, and the 
distribution F()~) then has a dominant effect. We shall 
therefore define the angular factor for this case from 
equation (13), 

B(9 ) = tan  (9/2) (1+ cos 2 9) • (16) 

3. D i s p l a c e m e n t  of the centroid 

3.1. General theory 
A general t reatment  allows one to predict the error 

in the centroid of an observed profile and gives at the 
same time a weighting factor which will permit the 
elimination of the correction. 

We suppose each intensity reading of the observed 
profile P(~o) to be multiplied by some function of ~v, 
say ~(9), and the weighted mean value of 9 then 
calculated 
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I toq~(to)P(to)dto 
= (17)  

~+ I q~(to)P(to)dto 

Now the observed profile is generated from the spectral 
profile F(2) by the two relations 

P(to)dto = B(to)F(2)d2 (18) 
and 

to = 2 arc sin (2/2d) = to(k), (19) 

where d is the mean lattice spacing. Using these two 
equations and for brevity writing 

B(to) = B(2 arc sin [2/2d]) = B1(2 ) (20) 

and similarly 

we have 

~2~= 
I to (2) q~ (4) B~ (2) F (2) d2 

I q~(2)B~(2)F(2)d2 

(21) 

(22) 

Defining new functions g and f by the equations, 

~0~(2)B~(2) = g(2) (23) 
and 

to(2)g(2) = f(2) (24) 

equation (22) becomes 

l f (2)F(2)d2 
= (25) 

~ I g(2)~(2)d 2 

We may expand f and g about 2 = 2 by Taylor's 
theorem, thus, 

I {f(2)-()'-2)f'(~')+½(2-2)~f"(~')+O(~'-2)a}F(2)d2 

l {g(~)- (~-2)g(~) + 1(~-2)~g'(~)+ O(Z-2)~}F(2)d2 ' 
(26) 

The integrals involving (2-2)  vanish by definition 
of 2, and using a binomial expansion for the denomi- 
nator and neglecting powers of (2-2)  higher than two, 
we obtain 

i {f(2)+l-() '-2)2f"(2)}F(2)d2 

Cflv - i g(il F(2ld 2 

½(2-2)~g"(2)F(2)d2 
× 1 - ~  , (27) 

_ lg( ~)F(2)d2 _ 

that  is, 

f(2) _f S (2-2)2 F(2)d2 [f,,(2)_f(2) g,, (~)] 

cp~ = - ~ )  2g(i) l F(2)d2 L ~ ~ T J  ' 
(23) 
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but from (24) 

f"(2)  = to"(2)g(2)+2to'(2)g'(2)+to(2)g"(2) , (29) 

and hence (28) may be written 

= v (30) 
g(2) j '  

where ~ is 2 arc sin (2/2d) and V is the variance of 
the spectral profile over the limits used. 

The second term of equation (30) thus gives the 
correction to be made to the centroid determined by 
weighting the observed profile by ~(to). 

3.2. Weighting function for the correction to vanish 
The requirement upon g(2) for the correction to 

vanish is 
g'(2) 

½to"(2) +to'(2) g ~  = 0 ,  (311 

that  is, 
1 to" (2) g' (2) 
2 to'(2~ - g ( 2 )  ' (32)  

which may be integrated, giving 

½ log [cto'(2)] = - l og  g(2), (33) 

where c is a constant of integration. 
Thus, 

9(2) \cto (2)] ' (34) 

which, using equation (19), gives 

g(2) = (cd cos 0)½ = (cos 0)½ (35) 

choosing the value c = 1/d for simplicity. 
Using now equations (35), (23), and (16), we have 

[cos (to/2)] 3/2 (36) 
~(to) = sin (to/2)[1 +cos 2 to]' 

which approaches 

~(to) oc [cos (to/2)] a/2 (37) 

at high Bragg angles. 

3-3. Correction to an unweighted centroid 
If the centroid ~0 of the observed profile is deter- 

mined in the normal manner, the correction for dis- 
persion, Lorentz, and polarization factors is given by 
equation (30) with q(to) - 1. 

In this case, 

~- '~o = -v~2-to (2)+to'(2)BI(~)j 

=-V{½to"(2)+to ' (2)  [ ~  logB~(2)]X}. (38) 

The first term is due to pure dispersion and the second 
due to the Lorentz and polarization factors. 
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Performing the differentiations, 

V { 8 eos~ 0 cos 20[ 
~ - ~ o = - ~ t a n ~ O  3+cot~O- ~ 2 0  ]'  (39) 

which approaches 

~-~o  = - (3  V tan~ 0)/2 (40) 

at high Bragg angles. 
This expression may be checked for the particular 

ease of a single Gaussian profile, the correction for 
which has been derived by Lang in the paper quoted 
above. 

I t  is to be remembered that  V is the variance of the 
spectral profile, and not the observed one. The observed 
profile will be broadened symmetrically by the re- 
ceiving slit width, for example, and it is clear that  this 
cannot affect the displacement of its centroid, although 
it will increase its variance. Similarly the observed 
profile will be broadened by other factors, but the 
displacement of the centroid will be given by the sum 
of the separate shifts due to each factor, evaluated 
before folding all the weight functions together to 
obtain the observed profile. 

I t  would appear therefore that  Lang's use of the 
variable c, denoting the ratio of observed to natural 
half-widths, in the expression for the shift of the 
centroid, is in error. A similar argument holds against 
the techniques of replotting against sin 0 or weighting 
by (cos 0) ~/'. These processes will only be accurate if 
the other aberrations of the line profile are negligible. 

Dropping, therefore, the factor c in Lang's equation 
(7) his result is, in our notation, 

Y)-V0 ~ --5 × l0 -6 tan a 0 degrees. 

To check equation (40) against this expression we use 
the value of 0.0006 ,~ used by Lang for the half-width 
of the Cu Ka  1, singlet, which we assume to have a 
Gaussian profile. The variance will then be 

V (0"0006)3 ~ = 6.45 × 10 -s A 2 . (41) 
(2.36) ~ 

Equation (40) gives, therefore, 

3 6.45 × 10 -s . 180__ tana 0 degrees 
~-V~o (1.54)~. • 

= -4 .7  × l0 -6 tan s 0 degrees, (42) 

which supplies the required confirmation. 

present calculations, but the most acceptable method 
would make use of the variance calculated from 
spectroscopic data. 

4.1. Single Cauchy profile 
The variance of the single Cauchy profile 

I = 2"o/(1+k~(~-t)~), (43) 

with mean value ~ and half-width 2/k (= H), over a 
range of (+A, - A )  about the mean, is given by 

f +A x~dx /¢+" dx 
V = -,~ 1 - ~ x = / j _  ~ 1 +]cPx ~ ' (44) 

which reduces to 

V = ~ a, rc tan 2A' - 1 , (45) 

where A' is A expressed in terms of the half-width. 
This expression depends quite critically on the range 
of integration, as distinct from a Gaussian profile 
where the 'tails' have a negligible effect. 

Making the assumption of a Cauchy profile for the 
Cu Kill ~ line, and using equations (45) and (40), the 
displacement of the centroid is plotted in Fig. 1, as 

0"08  . . . , . , ' , " ,  , 
! 

0"06 

0"04  

0"02  

0 ~ ~  , I I I I I f 
120 140 160  180  

• ~ (b) 
(a) 

I 

20 ° 

Fig. 1. Displacement  towards  high 20 of the  observed centroid  
of the  Cu Kf~ n line on the  assumpt ion  of a Cauchy profile, 
for various ranges of in tegrat ion.  (a) 2A = 6 × H . W .  
(b) 2A = 1 0 × H . W .  (c) 2A = 1 4 × H . W .  

a function of the Bragg angle, for various overall 
ranges of integration. The ranges, 2A, are expressed 
in terms of the spectral half-width. 

4. Application of the c o r r e c t i o n  

To apply the correction given by equations (39) or 
(40) the value of V must be known for the portion of 
the X-ray spectrum used. The assumption of Gaussian 
profiles for the characteristic lines will involve con- 
siderable error. The assumption of Cauchy profiles 
will be more accurate and this will be made in the 

4.2. Doublet 
Equations (39) and (40) hold independently of the 

form of the profile and all we require to be able to apply 
the correction to a doublet is, again, the variance of 
the spectral profile over the appropriate wavelength 
range. 

If we assume the doublet to be composed of two 
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component profiles at a separation A2, we may find 
the total  variance by adding the separate second 
moments about the new centroid, each weighted 
according to the relative magnitudes of the compo- 
nents. The second moment of each component about 
the centroid of the doublet may be found by using 
the parallel-axes theorem. 

Thus if V1 and V~ are, respectively, the variances 
of two components whose integrated intensities are 
I x and I2, the variance of the doublet is given by 

' +,,, 
V I~ + I~. \/~---~21 ] L \/~---~21 ] I "  

(46) 

For the Cu K s  doublet we may  take, reasonably 
accurately, 11 = 212, and V1 = V~. Equation (46) then 
reduces to 

V = VI+ ~ (A;t) 2 . (47) 

We again assume a Cauchy profile to determine V 1, 
which is therefore given by equation (45). Using a 
weighted mean value of the half-widths of the CuK~I, 
and Cu K ~  profiles, namely ½(2.0.60+0.75)XU, and 
setting A~ equal to 3-82XU, the correction for the 
doublet may be calculated from equation (39) 

180 
~ - ~ 0  = - ~ 0 . 5 4 1 ~  

x {~ (0"00065)~ [arc 2A'tan 2A' - 1 ]  + ~ (0"00382)~} 

0 ~3+cot  2 O-  8 cos 2 0 cos 20~ tan s × 
i ~ - ~ 0  l" ( 

(48) 

I t  will be noticed that  we have used symmetrical 
limits for each component, whereas, of course, when 
we integrate over a range symmetrical about the 
centroid of the doublet the portions of the individual 
components included will be quite asymmetrical, and 
will even have a different asymmetry  for each. We 
are, however, justified in this procedure by the fact 
tha t  the term in the variance due to the separation 
of the doublet is much larger than the term due to 
the variances of the components; for the Cu K a  
doublet the ratio of the two terms is about 8 to 1. 
Thus the error introduced by neglecting portions of 
the tails of the components in calculating the lat ter  
term will normally be negligible. We will make this 
error as small as possible by using for A a weighted 
mean value of the distances between the centres of 
each component and their nearer limit. Fig. 2 shows 
the procedure for the Cu K s  doublet. 

Fig. 3 gives the displacement towards higher 20 of 
the centroid of the Cu K a  doublet, as a function of 
the Bragg angle, for various ranges of integration. The 
range is the distance between the limits used, converted 
to the wavelength scale, divided by the mean spectral 
half-width. 

J 
k A, 

A = (2Al+A2)/3 

Fig. 2. The value of A to be used in calculating 
the displacements for a 2 : l doublet. 

0"15 

0 " 1 0  
,c,I 

0"05 

I I I I 

t 
120 140 160 

20 ° 

i 

(b) 

'(a) 

, I , 

180 

Fig. 3. Disp lacement  towards  high 20 of the  observed cent ro id  
of the  Cu K a  double t  assuming Cauchy profiles. (a) R a n g e  
of in tegra t ion  2A = 1 0 × H . W .  (b) 2A = 3 0 × H . W .  

5. Conclusions  

The following conclusions may be put forward on the 
basis of the above analysis. 

(i) The finite spread of wavelengths in the char- 
acteristic X-ray lines causes the observed centroid of 
a diffraction profile in the back-reflexion region to be 
displaced towards high 20. 

(ii) The magnitude of the displacement is such tha t  
for precision measurements of lattice parameter with 
the Cu Kc¢ doublet a correction must be applied to all 
lines above 20 ~-110 °. 

(iii) A correction may be applied most accurately 
by calculating the centroid of the observed profile in 
the normal manner and subtracting an amount, given 
by equation (39), which is a function of Bragg angle 
and the variance of the spectral profile. 

(iv) The assumption of Cauchy profiles to calculate 
the variance of the spectral distribution will give reli- 
able results for a doublet over normal limits, since a 
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large part of the variance in this case is due to the 
doublet separation only. 

(v) At very high Bragg angles the correction is so 
large that  unless values of the variance are known from 
empirical spectroscopic measurements, the methods of 
replotting against sin 0 or, alternatively, weighting by 
(cos 0) 3/~ may be comparable in accuracy to that 
suggested in 4. That they will be more accurate is 
unlikely, due to the increasing magnitude of vertical- 
divergence broadening at high angles. 

(vi) For completeness, a warning given by Lang 
(1956) is repeated and extended here. If high accuracy 
is required, the various analytical or graphical methods 
proposed for separating the components of a doublet 
may not be performed on the profiles obtained in the 
back-reflexion region, due to the different degrees of 
dispersion in the two components. Such methods are 
sometimes used in order to find the peak positions of 
the component~s for lattice parameter measurement. 
In the opinion of the author such procedures will 
rarely, if ever, be worthwhile for this purpose for the 
following reasons. 

If such accuracy is desired that  it is thought worth- 
while to contemplate such a separating process, then 
corrections for dispersion, vertical divergence, and 
other instrumental aberrations should also be applied. 
This however is almost impossible to effect for the 
peak position. To correct the doublet shape for dis- 
persion it would be necessary to replot on a sin 0 
scale before proceeding, and even then the result 
would not be accurate, due to the other aberrations 
present. For most of the other aberrations it would 
be necessary to 'unfold' the observed profile from their 
different weight functions, one by one, by Fom'ier 
methods to find the true peak position. Needless to say, 
this is not a practical course. Thus, the accuracy 
obtained in finding peak positions by resolving the 
doublet will be lost in the residual instrumental errors 
which cannot be eliminated. 

Further, the labour involved in such a procedure 
will exceed that  required to find the centroid of the 
complete doublet, and this latter point may be cor- 
rected fully for all the major errors (Wilson, 1950; 
Pike, 1957), including horizontal and vertical diver- 
gences, absorption, and dispersion. The lattice para- 
meter may be found from the centroid of the doublet 
by using the corresponding value of wavelength from 
the spectral profile, in the Bragg equation. Until such 
time as reliable values of these points are determined 
spectroscopically, the weighted mean of the tabulated 
K~xl, and Kc¢ 2 components must be used. 

I t  has been demonstrated that  the centroid of a 
profile can be determined experimentally to a re- 
producibility of the order of 0.001 ° 20, and it would 
seem that in all cases it will be more profitable to use 
this point than to try to separate the doublet compo- 
nents to find their peak positions (Pike, 1958). 

A discussion of the subject of the determination of 
line positions for lattice-parameter measurement is in 
preparation by workers at Cardiff, in collaboration 
with a group at Philips Laboratories, Irvington, New 
York, and it is hoped that  results will be published 
shortly. 

The author is greatly indebted to Prof. A . J . C .  
Wilson for stimulating this work and for helpful 
discussion during its progress, and to Dr W. Parrish 
and Dr J. Ladell of Philips Laboratories, New York, 
for raising the problem. The work has been carried 
out in connexion with the author's employment by 
the (British) Institute of Phvsics on work on the 
A. S.T.M. Powder Data File. 
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